Molecular interactions between wall polysaccharides, which include cellulose and a range of non-cellulosic polysaccharides such as xyloglucans and (1,3;1,4)-β-d-glucans, are fundamental to cell wall properties. These interactions have been assumed to be non-covalent in nature in most cases. A highly purified barley xyloglucan xyloglucosyl transferase HvXET5 (EC 2.4.1.207), a member of the GH16 group of glycoside hydrolases, catalyses the in vitro formation of covalent linkages between xyloglucans and cellulosic substrates, and between xyloglucans and (1,3;1,4)-β-d-glucans. It is possible that XETs could link different polysaccharides in vivo, and hence influence cell wall strength, flexibility and porosity.

Immunogen
Two synthetic peptides from highly conserved region of *Hordeum vulgare* XTH-Xet

Host
Rabbit

Clonality
Polyclonal

Purity
Serum

Format
Lyophilized

Quantity
100 µl

For reconstitution add 100 µl of sterile water.

Store lyophilized/reconstituted at -20°C; once reconstituted make aliquots to avoid repeated freeze-thaw cycles. Please, remember to spin tubes briefly prior to opening them to avoid any losses that might occur from lyophilized material adhering to the cap or sides of the tubes.

ELISA (ELISA), Western blot (WB)

*Hordeum vulgare, Oryza sativa*

*Zea mays*

