Product no AS09 633
Goat anti-Rabbit IgG (H&L), DyLight® 488 conjugated

Product information

Immunogen | Purified Rabbit IgG, whole molecule
Host | Goat
Clonality | Polyclonal
Purity | Immunogen affinity purified goat IgG.
Format | Lyophilized
Quantity | 1 mg

Reconstitution | For reconstitution add 1,1 ml of sterile water, Let it stand 30 minutes at room temperature to dissolve, Prepare fresh working dilutions daily
Storage | Store lyophilized material at 2-8°C. Product is stable for 4 weeks at 2-8°C after rehydration. For long time storage after reconstitution, dilute the antibody solution with glycerol to a final concentration of 50% glycerol and store as liquid at -20°C, to prevent loss of enzymatic activity. For example, if you have reconstituted 1 mg of antibody in 1,1 ml of sterile water add 1,1 ml of glycerol. Such solution will not freeze in -20°C. If you are using a 1:5000 dilution prior to diluting with glycerol, then you would need to use a 1:2500 dilution after adding glycerol. Prepare working dilution prior to use and then discard. Be sure to mix well but without foaming.

Additional information | Concentration: 1.0mg/ml
Conjugate is present in 10 mM Sodium Phosphate, 0.15 M Sodium Chloride, pH 7.2, 1 % (w/v) BSA, Protease/IgG free. 0.05 % (w/v) sodium azide is added as preservative.
DyLight® 488 has a maximum absorbance at 493 nm; Emax = 518 nm.

Application information

Recommended dilution | 1:50- 1:5 000 (ICC), 1 : 20- 1 : 2000 (IHC), 1 : 3000 (IF)
Confirmed reactivity | Rabbit IgG heavy and light chains (H&L)
Predicted reactivity | Rabbit IgG Heavy and Light chains (H&L)

Additional information | Based in immunoelectrophoresis, this antibody reacts with heavy chains on rabbit IgG and light chains on all rabbit immunoglobulins.
No reactivity is observed to non-immunoglobulin rabbit serum proteins based in immunoelectrophoresis.
Purity of this antibody is > 95% based on SDS-PAGE.

Selected references

Application example
Seeds of field bean (Vicia faba L. subsp. minor var. Nadwiślański; DANKO Group; Sobiejuchy) were sterilized using sodium hypochlorite (0.3% v/v) and germinated in Petri dishes on wetted filter paper at room temperature. At 4 d after imbibition, dark-grown seedlings with primary roots 25±5 mm long were selected for experiments. During incubations roots were oriented horizontally in a humid chamber and aerated continuously on a rotary water-bath shaker (30 rpm) at 23 °C. Immunocytochemical assays were performed according to the method prescribed earlier (Rybaczek and Maszewski 2006). Excised apical parts of roots (1.5 mm long) were fixed for 45 min (18 °C) in PBS-buffered 3.7% paraformaldehyde, washed several times with PBS and placed in a citric acid-buffered digestion solution (pH 5.0; 37 °C for 45 min) containing 2.5% pectinase (Fluka), 2.5% cellulase (Onozuka R-10; Serva) and 2.5% pectoliase (ICN). After removing the digestion solution, root tips were washed 3 times in PBS, rinsed with distilled water and squashed onto Super Frost Plus glass slides (Menzel-Gläser). Air-dried slides were pretreated with PBS-buffered 5% BSA at 20 °C for 50 min and incubated overnight in a humidified atmosphere (4 °C) with rabbit antibody raised against TOPO2 (Agrisera), dissolved in PBS containing 1% BSA (at a dilution of 1:500). Following incubation, slides were washed 3 times with PBS and incubated for 1 h (18 °C) with secondary goat anti-rabbit IgG DyLight®488 antibody (Agrisera, AS09 633, 1:3000). Nuclear DNA was stained with 4′,6-diamidino-2-phenyl-indole (DAPI, 0.4 µg/ml; Sigma-Aldrich). Following washing with PBS, slides were air dried and embedded in Vectashield Mounting Media for Fluorescence (Vector Laboratories). Observations were made using Optiphot-2 fluorescence microscope (Nikon) equipped with B-2A filter (blue light; 495 nm) for DyLight-conjugated antibodies and UV-2A filter (UV light; 365 nm) for DAPI. All images were recorded at exactly the same time of integration using DXM 1200 CCD camera.

Courtesy Dr. Dorota Rybaczek, Lodz University, Poland