Name:
Phone:
E-mail:
Message
AGO set
Tag Antibody Set 

ALD | Fructose-1,6 bisphosphate aldolase

AS08 294 | Clonality: Polyclonal | Host: Rabbit | Reactivity: A. thaliana, B. napus, C. arietinum, E. tef, G. gracilis, O. sativa, P. falciparum, T. salsuginea

ALD | Fructose-1,6 bisphosphate aldolase in the group Antibodies for Plant/Algal  / Carbohydrates at Agrisera AB (Antibodies for research) (AS08 294)

PRODUCT INFORMATION IN PDF


Datasheet Product citations Protocols Customer reviews

Product Information

Immunogen

overexpressed cytosolic fructose 1,6 bisphosphate aldolase (ALD) based on the sequence from Arabidopsis thaliana Q9LF98, At3g52930

Host Rabbit
Clonality Polyclonal
Purity Serum
Format Lyophilized
Quantity 100 µl
Reconstitution For reconstitution add 100 µl of sterile water.
Storage Store lyophilized/reconstituted at -20°C; once reconstituted make aliquots to avoid repeated freeze-thaw cycles. Please, remember to spin tubes briefly prior to opening them to avoid any losses that might occur from lyophilized material adhering to the cap or sides of the tubes.
Tested applications Western blot (WB)
Recommended dilution 1 : 5000 (WB)
Expected | apparent MW

38 | 38 kDa

Reactivity

Confirmed reactivity Arabidopsis thaliana, Brassica napus, Cicer arietinum, Eragrostis tef, Gracilaria gracilis (red algae), Oryza sativa, Plasmodium chabaudi, Plasmodium falciparum, Thellungiella salsuginea
Predicted reactivity Glycne max, Oryza sativa, Picea sitchensis, Physcomitrella patens, Pisum sativum, Populus jackii, Spinacia oleracea, Vitis vinifera, Zea mays
Not reactive in

Synechocystis sp.

Application examples

Additional information

This product can be sold containing ProClin if requested.

Related products

Background

Background

Fructose-1,6 bisphosphate aldolase (ALD) is an enzyme catalazying a key reaction of glycolysis and energy production, converting D-fructose- 1,6-bisphospate into dihydroxyacetone phosphate and D-glyceraldehyde-3-phosphate. This enzyme is present in plant and animal tissues. Plant enzyme is a class I aldolase which does not require a bivalent metal cofactor. It is located to outer mitochondrial membrane.

Product citations

Selected references Wang et al. (2018). iTRAQ-based quantitative proteomics analysis of an immature high-oleic acid near-isogenic line of rapeseed. Molecular Breeding January 2018, 38:2.
Kamies et al. (2017). A Proteomic Approach to Investigate the Drought Response in the Orphan Crop Eragrostis tef. Proteomes. 2017 Nov 15;5(4). pii: E32. doi: 10.3390/proteomes5040032.
Foley et al. (2017). A Global View of RNA-Protein Interactions Identifies Post-transcriptional Regulators of Root Hair Cell Fate.Dev Cell. 2017 Apr 24;41(2):204-220.e5. doi: 10.1016/j.devcel.2017.03.018.
Parveen et al. (2016). Chickpea Ferritin CaFer1 Participates in Oxidative Stress Response, and Promotes Growth and Development. Sci Rep. 2016 Aug 9;6:31218. doi: 10.1038/srep31218.
Yam et al. (2016). Characterization of the Plasmodium Interspersed Repeats (PIR) proteins of Plasmodium chabaudi indicates functional diversity. Sci Rep. 2016 Mar 21;6:23449. doi: 10.1038/srep23449.
Dixit (2015). Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves. Sci Rep. 2015 Nov 10;5:16205. doi: 10.1038/srep16205.
Vera-Estrella et al. (2014). Comparative 2D-DIGE analysis of salinity responsive microsomal proteins from leaves of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea. J Proteomics. 2014 Jun 2. pii: S1874-3919(14)00288-7. doi: 10.1016/j.jprot.2014.05.018.