ANTIBODY SHOP

Services
Name:
Phone:
E-mail:
Message

cFBPase | Cytosolic fructose-1,6-bisphosphatase (cytoplasm marker in photosynthetic tissues)

360 €
Buy 2 items of this product for 198 €/each
Buy 3 items of this product for 180 €/each

AS04 043  |  clonality: polyclonal  |  host: rabbit  |  reactivity: A.thaliana, B.napus, M.atropurpureum, N.benthamiana, P.silvestris, O.sativa, P.hybrida cv. Mitchell, S.tuberosum, Z.mays |  cellular [compartment marker] of cytoplasm 

PRODUCT INFORMATION IN PDF

Qty: 
Availability:
32 st
Delivery:
Shipping:
Item No:
AS04 043

Info: Product suggestions Read reviews
product information
Background

Fructose-1,6 bisphosphatase (FBPase) (EC=3.1.311)  is one of the regulatory enzymes in the sucrose biosynthetic pathway. In non-photosynthetic tissues, it regulates the rate of gluconeogenesis. In photosynthetic tissues, two FBPase isozymes (chloroplastic and cytosolic) play key roles in carbon assimilation and metabolism. In photosynthetic tissues cFBPase (cytosolic fructose 1,6 bisphosphatase) converts triose phosphates from the chloroplast to sucrose during light hours. Alternative name: D-fructose-1,6-bisphosphate 1-phosphohydrolase

Immunogen

Overexpressed cytosolic fructose 1,6 bisphosphatase (cFBPase) derived from the sequence from Arabidopsis thaliana cFBPase UniProt: Q9MA79, TAIR: AT1G43670

Host Rabbit
Clonality Polyclonal
Clone
Purity Serum
Format Lyophilized
Quantity 50 µl
Reconstitution For reconstitution add 100 µl of sterile water
Storage Store lyophilized/reconstituted at -20°C; once reconstituted make aliquots to avoid repeated freeze-thaw cycles. Please, remember to spin tubes briefly prior to opening them to avoid any losses that might occur from lyophilized material adhering to the cap or sides of the tubes.
Tested applications Western blot (WB)
Related products

Collection of other antibodies which can be used as markers of cytoplasm

Plant protein extraction buffer

Secondary antibodies

Additional information

Kinetic and allosteric properties of the plant cytosolic FBPase are remarkably similar to the mammalian and yeast FBPase, but differ greatly from those of the chloroplastic FBPase. The antibody could detect FBPase from the human COS-7 cell line transfected with FBP1 expressing vector.

application information
Recommended dilution 1 : 5 000 (WB)
Expected | apparent MW

45 | 37 kDa (Arabidopsis thaliana)

Confirmed reactivity Arabidopsis thaliana, Brassica napus, Macroptilium atropurpureum, Nicotiana benthamiana, Pinus silvestris, Oryza sativa, Petunia hybrida cv. Mitchell, Solanum tuberosum, Zea mays cellular compartment marker of cytoplasm in photosynthetic tissues
Predicted reactivity Capsella rubella, Pisum sativum, Ricinus communis, Glycine max, Phaseolus vulgaris, Sesamum indicum, Spinacia oleracea, Populus trichocarpa, Vitis vinifera
Not reactive in

Chlamydomonas reinhardtii

Additional information

For image of detection please refer to Strand et al. 2000. This antibody does not react with chloroplastic form of FBPase.

Will this antibody be good as a cytosolic (non-microsomal control) in Arabidopsis thaliana roots? Although it has never been tested there is every likelihood that cFBPase will be expressed at reasonable levels even in roots. Even though the biosynthetic flux through to Sucrose may not be high as in mesophyll cells, central metabolism will still be active in young roots and the Sucrose etc being supplied externally still needs to be utilised. 

Selected references Lynch et al. (2017). Multifaceted plant responses to circumvent Phe hyperaccumulation by downregulation of flux through the shikimate pathway and by vacuolar Phe sequestration. Plant J. 2017 Dec;92(5):939-950. doi: 10.1111/tpj.13730.
Duan et al. (2017). A Lipid-Anchored NAC Transcription Factor Is Translocated into the Nucleus and Activates Glyoxalase I Expression during Drought Stress. Plant Cell. 2017 Jul;29(7):1748-1772. doi: 10.1105/tpc.17.00044. (Nicotiana benthamiana)
Steffens et al. (2017). Physical, Functional and Genetic Interactions between the BEACH Domain Protein SPIRRIG and LIP5 and SKD1 and Its Role in Endosomal Trafficking to the Vacuole in Arabidopsis. Front Plant Sci. 2017 Nov 20;8:1969. doi: 10.3389/fpls.2017.01969. Xing et al. (2016). Proteome Profile of Starch Granules Purified from Rice (Oryza sativa) Endosperm. PLoS One. 2016 Dec 19;11(12):e0168467. doi: 10.1371/journal.pone.0168467.
LaMontagne et al. (2016). Isolation of Microsomal Membrane Proteins from Arabidopsis thaliana. Curr. Protoc. Plant Biol. 1:217-234. doi: 10.1002/cppb.20020.
Ma et al. (2016). Phosphatidylserine Synthase Controls Cell Elongation Especially in the Uppermost Internode in Rice by Regulation of Exocytosis. PLoS One. 2016 Apr 7;11(4):e0153119. doi: 10.1371/journal.pone.0153119. eCollection 2016.
de Michele et al. (2016). Free-Flow Electrophoresis of Plasma Membrane Vesicles Enriched by Two-Phase Partitioning Enhances the Quality of the Proteome from Arabidopsis Seedlings. J Proteome Res. 2016 Mar 4;15(3):900-13. doi: 10.1021/acs.jproteome.5b00876. Epub 2016 Feb 4.


||| For other applications, usage on species other than stated above or any other questions, please use the LiveChat option or contact us at support@agrisera.com