PsbB | CP47 protein of PSII

AS04 038 | Clonality: Polyclonal | Host: Rabbit | Reactivity: [global antibody] for higher plants, Physcomitrella patens, algae, cyanobacteria, diatoms

PsbB | CP47 protein of PSII in the group Antibodies for Plant/Algal  / Global Antibodies at Agrisera AB (Antibodies for research) (AS04 038)


Buy 2 items of this product for 218.00 €/items
How to cite this product:
Product name, number (Agrisera, Sweden)

Data sheet Product citations Protocols Customer reviews

Product Information


KLH-conjugated synthetic peptide derived from available plant, algal and cyanobacterial PsbB sequences including Arabidopsis thaliana AtCg00680, Hordeum vulgare P10900, Oryza sativa P0C364, Synechocystis PCC 6803 P05429

Host Rabbit
Clonality Polyclonal
Purity Serum
Format Lyophilized
Quantity 50 µl
Reconstitution For reconstitution add 50 µl of sterile water.
Storage Store lyophilized/reconstituted at -20°C; once reconstituted make aliquots to avoid repeated freeze-thaw cycles. Please, remember to spin tubes briefly prior to opening them to avoid any losses that might occur from lyophilized material adhering to the cap or sides of the tubes.
Tested applications Western blot (WB)
Recommended dilution 1 : 2000 (WB)
Expected | apparent MW

56 kDa


Confirmed reactivity Anabaena 7120, Arabidopsis thaliana, Chlamydomonas reinhardtii, Echinochloa crus-galli, Hordeum vulgare, Malus prunifolia, Mesostigma viride, Opephora guenter-grassii (diatom), Oryza sativa, Panicum miliaceum, Phaseolus vulgaris, Physcomitrella patens, Pisum sativum, Skeletonema costatum (diatom), Synechococcus PCC7942, 6803, , Seminavis robusta (diatom), Zea mays
Predicted reactivity Abies concolor, Brachypodum distachyon, Brassica napus, Cannabis sativa, Cyanobacteria, Cucumis sativus, Ephedra sp., Glycine max, Lotus japonicus, Manihot esculenta, Nanochloropsis sp., Nicotiana tabacum, Panax ginseng, Populus trichocarpa,
Species of your interest not listed? Contact usSolanum tuberosum, Sorghum bicolor, Spinacia oleracea, Triticum aestivum, Vitis vinifera
Not reactive in No confirmed exceptions from predicted reactivity are currently known.

Application examples

Application examples

Application example

Western blot of anti-PsbB antibody

2 µg of total protein from Arabidopsis thaliana leaf (1), Horderum vulgare (2), Chlamydomonas reinhardtii total cell (3) Synechococcus sp. 7942 total cell (4), Anabaena sp. total cell (5), were extracted with PEB (AS08 300) and separated on 4-12% NuPage (Invitrogen) LDS-PAGE and blotted 1h to PVDF. Blots were blocked immediately following transfer in 2% blocking reagent in 20 mM Tris, 137 mM sodium chloride pH 7.6 with 0.1% (v/v) Tween-20 (TBS-T) for 1h at room temperature with agitation. Blots were incubated in the primary antibody at a dilution of 1: 50 000 for 1h at room temperature with agitation. The antibody solution was decanted and the blot was rinsed briefly twice, then washed once for 15 min and 3 times for 5 min in TBS-T at room temperature with agitation. Blots were incubated in secondary antibody (anti-rabbit IgG horse radish peroxidase conjugated, recommended secondary antibody AS09 602) diluted to 1:50 000 in 2% blocking solution for 1h at room temperature with agitation. The blots were washed as above and developed for 5 min with chemiluminescence detection reagent according the manufacturers instructions. Images of the blots were obtained using a CCD imager (FluorSMax, Bio-Rad) and Quantity One software (Bio-Rad).

Western blot using anti-CP47 antibodies

2.0 µg of chlorophyll from Pisum sativum chloroplasts and from Zea mays, Echinochloa crus-galli, Panicum miliaceum mesophyll and bundle sheath chloroplasts extracted with 0.4 M sorbitol, 50 mM Hepes NaOH, pH 7.8, 10 mM NaCl, 5 mM MgCl2 and 2 mM EDTA. Samples were denatured with Laemmli buffer at 75°C for 5 min and were separated on 12% SDS-PAGE and blotted 30 min to PVDF using wet transfer. Blot was blocked with 5% milk in TBS for 2h at room temperature (RT) with agitation. Blot was incubated in the primary antibody AS04 038 at a dilution of 1: 2000 overnight at 4°C with agitation in 1% milk in TBS-T. The antibody solution was decanted and the blot was washed 4 times for 5 min in TBS-T at RT with agitation. Blot was incubated in secondary antibody (anti-rabbit IgG horse radish peroxidase conjugated, from Agrisera, AS09 602) diluted to 1:25 000 in  1% milk in TBS-T for 1h at RT with agitation. The blot was washed 5 times for 5 min in TBS-T and 2 times for 5 min in TBS, and developed for 1 min with 1.25 mM luminol, 0.198 mM coumaric acid and 0.009% H2O2 in 0.1 M Tris- HCl, pH 8.5. Exposure time in ChemiDoc System was 122 seconds.

Courtesy Dr. Wioleta Wasilewska-Dębowska, Warsaw University, Poland

Additional information

Additional information This antibody can be used as a loading control for studies of PSIi or photosynthetic acclimation in diatoms Blommaert et al. 2017.  Limnol. Oceanogr. DOI: 10.1002/lno.10511.

This product can be sold containing ProClin if requested.

This product can be sold containing ProClin if requested

in bis-tris gel systems PsbB protein migrates between 40-45 kDa

Related products

Related products

AS04 038PRE | PsbB | CP47 protein of PSII, pre-immune serum

antibodies to other PSII proteins

Plant and algal protein extraction buffer



PsbB (CP47) is a chlorophyll-binding protein located in the membrane, where it serves as the core antenna of Photosystem II.

Product citations

Selected references Cecchin et al (2021) LPA2 protein is involved in photosystem II assembly in Chlamydomonas reinhardtii. Plant J. 2021 Jul 4. doi: 10.1111/tpj.15405. Epub ahead of print. PMID: 34218480.
Li et al. (2021). Physiological responses of Skeletonema costatum to the interactions of seawater acidification and the combination of photoperiod and temperature. Biogeosciences, 18, 1439–1449, 2021
Kamea et al. (2021). Substitution of deoxycholate with the amphiphilic polymer amphipol A8-35 improves the stability of large protein complexes during native electrophoresis. Plant Cell Physiol. 2021 Jan 5:pcaa165. doi: 10.1093/pcp/pcaa165. Epub ahead of print. PMID: 33399873.
Aso et al. (2021). Unique peripheral antennas in the photosystems of the streptophyte alga Mesostigma viride. Plant Cell Physiol. 2021 Jan 8:pcaa172. doi: 10.1093/pcp/pcaa172. Epub ahead of print. PMID: 33416834.
Trinugroho et al. (2020). Chlorophyll F Synthesis by a Super-Rogue Photosystem II Complex. Nat Plants , 6 (3), 238-244
Dong et al. (2020). Plastid ribosomal protein LPE2 is involved in photosynthesis and the response to C/N balance in Arabidopsis thaliana. J Integr Plant Biol. 2020 Jan 15. doi: 10.1111/jipb.12907.
Furukawa et al. (2019). Formation of a PSI–PSII megacomplex containing LHCSR and PsbS in the moss Physcomitrella patens. J Plant Res
Gonzaga Heredia-Martinez et al. (2018). Chloroplast damage induced by the inhibition of fatty acid synthesis triggers autophagy in Chlamydomonas. Plant Physiol, Sept. 2018.
Patil et al. (2018). FZL is primarily localized to the inner chloroplast membrane however influences thylakoid maintenance. Plant Mol Biol. 2018 Jul;97(4-5):421-433. doi: 10.1007/s11103-018-0748-3.
Bressan et al. (2018). Light harvesting complex I is essential for Photosystem II photoprotection under variable light conditions in Arabidopsis thaliana. Environmental and Experimental Botany Available online 10 March 2018.
Myouga et al. (2018). Stable accumulation of photosystem II requires ONE-HELIX PROTEIN1 (OHP1) of the light harvesting-like family. Plant Physiol. 2018 Feb 1. pii: pp.01782.2017. doi: 10.1104/pp.17.01782.
Schöttler et al. (2017). The plastid-encoded PsaI subunit stabilizes photosystem I during leaf senescence in tobacco. J Exp Bot. 2017 Feb 1;68(5):1137-1155. doi: 10.1093/jxb/erx009.
Xing et al. (2017). Deletion of CGLD1 Impairs PSII and Increases Singlet Oxygen Tolerance of Green Alga Chlamydomonas reinhardtii. Front. Plant Sci., 15 December 2017.
Blommaert et al. (2017). Contrasting NPQ dynamics and xanthophyll cycling in a motile and a non-motile intertidal benthic diatom. Limnol. Oceanogr. doi: 10.1002/lno.10511
Gandini et al. (2017). The transporter SynPAM71 is located in the plasma membrane and thylakoids, and mediates manganese tolerance in Synechocystis PCC6803. New Phytol. 2017 Mar 20. doi: 10.1111/nph.14526.
Hu et al. (2017). The SUFBC2 D Complex is Required for the Biogenesis of All Major Classes of Plastid Fe-S Proteins. Plant J. 2017 Jan 19. doi: 10.1111/tpj.13483.
Fan et al. (2016). Proteome Analyses Using iTRAQ Labeling Reveal Critical Mechanisms in Alternate Bearing Malus prunifolia. J Proteome Res. 2016 Oct 7;15(10):3602-3616.
Fristedt et al. (2015). The thylakoid membrane protein CGL160 supports CF1CF0 ATP synthase accumulation in Arabidopsis thaliana. PLoS One. 2015 Apr 2;10(4):e0121658. doi: 10.1371/journal.pone.0121658.
Armbruster et al. (2014). Ion antiport accelerates photosynthetic acclimation in fluctuating light environments. Nat Commun. 2014 Nov 13;5:5439. doi: 10.1038/ncomms6439

Related products: PsbB | CP47 protein of PSII

AS16 ECL-S-N | low pico to mid femtogram and extreme low femtogram detection

This product can b...
From 25 €
AS09 607 Clonality: Polyclonal Host: Goat Reactivity: Rabbit IgG (H&L)
199 €
AS09 602 |  Clonality: Polyclonal | Host: Goat | Reactivity: Rabbit IgG (H&L)
194 €